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A mathematical model of inhibition of gas flames by inert powders is studied. 

The wide use of powders as fire preventive and extinguishing media is related to their 
high capabilities for these purposes and the convenience with which they may be stored and 
used [i, 2]. The mechanism involved in suppressing gas flames has been explained in [2-4] as 
a retardation of combustion by the heat absorbing dispersed material, as chemical inhibition, 
or a combination of these factors. In [5-7], which studied the effectiveness of heavy sili- 
con-containing particles on a gas flame, it was found that an increase in mass concentration 
of the dispersed material with fixed particle size decreases the combustion rate, while in- 
crease in particle size for constant mass concentration decreases the effect of the solid 
phase upon the combustion rate. 

From the viewpoint of the thermodiffusion model of flame propagation, these results can 
be explained by the inert nature of heat exchange between the particles and gas. In particu- 
lar, quantitative estimates of the decrease in steady-state flame rate in a dusty gas can be 
carried out within the framework of methods developed within the combustion theory of [8]. 

In practice a combustion wave in a gas interacts with a solid particle suspension par- 
tially in nonsteady-state regimes. The two corresponding model problems are presented below. 
Results of these problems are interpreted using conclusions from steady-state theory. 

i. Nonsteady-State Interaction of a Flame Front with a Dust Cloud:. We assume that a 
high-temperature hearth initiates a combustion reaction within the gas, such that after a set- 
up period a flame propagates through the gas at constant velocity. To phlegmatize the combus- 
tion along the path of the flame there is created a cloud of uniformly distributed inert par- 
ticles of radius r and numerical concentration No. Because of heat exchange between the par- 
ticles and gas, which (we will assume) obeys Newton's law with a heat liberation coefficient 

= XgNu/r, cooling of the gas occurs, as a result of which the reaction rate, and hence, the 
combustion rate, decrease. 

We describe the evolution of such a system by the thermal conductivity equation for the 
gas (for simplicity we model a one-dimensional situation): 

eTg 02Tg . " ~. 
Cg.pg Ot = •v ~x~ + kbQ exp (--E/RTg)--•SpNo(Tg--T p) ~1 (x - -  xo), (1)  

the heat-exchange equation for the particle 

~PP dTp ___ as (Tg -- Tp) (2) 
dl P 

and the diffusion equation for the original reagent 

Ob OZb 
---- D bk exp ( - -  E/RTg). (3)  

Ot Ox 2 
I n  Eq. ( l )  q ( x - x o )  i s  a R e a v i s i d e  f u n c t i o n ,  e q u a l  t o  z e r o  f o r  x < xo a n d  un i ty  for  x>~xo. 

The initial conditions for Eqs. (1)-(3) must reflect the character of initiation. 

Since we have not considered the initial period of flame development the reagent concen- 
tration will be specified in the form b(x, 0) = i, while the temperature field, as ina steady- 
state combustion wave, will be given by 

Tg (x, 0) = (T+ - -  T_) exp ( - -  xCgOglLgtt+) q- T_ 
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Fig. i. Relative change in flame velocity with coordinate 
for various dust cloud parameters: i) B = 0.2, • = i0; 2) 
B ffi 0.i, • = i0; 3) B = 0.2, x ffi i0"; 4) B ffi 0.I, x = l0 s , 
y = 0.i. 

(a Michelson profile [8]), where T- is the original gas temperature; T+ is the adiabatic com- 
bustion temperature, T+ = T- + Q/Cgpg; u+ is the adiabatic combustion rate: 

2%g - 

The boundary conditions, aside from the obvious ~Tg(~, t)/~x = ~b(~, t)/@x = Bb(O, t)/~x = 0, 
reflect the continuous action of the heat source, Tg(O, t) = T+. 

The characteristic scale factors of the problem are the adiabatic reaction period at a 
combustion temperature t+ = RT$ Cgpgexp(E/RT+)/EQk, the corresponding length x+ = ~$+/%pg 

and the temperature change RT$/E, use of which transforms Eqs. (1)-(3) to a problem with five 
parameters" Le = Dc pg/l , B = RT+/E, y = RTSdgpg/EQ, B = NoW c p /c p , m = c p w /set+. 

�9 g g - P P P  g g  P P P  P 
We assume, as is usual for gas flames, that Le = i. The parameter B corresponds ~o nonlinear 
terms of the expansion of Tg -~ in a series of Tg-T+ with Arrhenius exponent and may not be 
varied in calculations for high E. 

Consequently, the solution of the problem, in particular the velocity of flame motion 
(which we understand as the rate of displacement of the coordinate at which one half of the 
gas has been reacted) ~ = t+dx/x+dt, is defined by three significant parameters, two of 
which, B and x, are related to the presence of the dispersed material. 

Computer calculations of the dynamics of combustionwave velocity (with a grid becoming 
more dense in the intense chemical liberation zone) are shown in Fig. i. Meeting the cloud 
of inert particles (with initial coordinate ~o), the flame decreases its velocity to the level 
~, determined by the characteristics of the dispersed material�9 With increase in particle 
size (parameter ~) the distance at which change in flame propagation velocity changes in- 
creases�9 With increase in B (for constant R) there is a similar pattern, but less well ex- 
pressed. The smaller the size of the particles, the greater the distance from the cloud bound- 
ary ~o do they have an effect upon the flame front�9 The order of magnitude of thickness of 
the particle cloud sufficient for phlegmatization of a gas suspension of given composition is 
lg/Cgpgu. An upper limit for this value will be obtained by using the steady state flame ve- 
locis in the dusty medium for u, which agrees well with calculated data. Therefore we will 
turn to calculation of the steady state flame velocity. 

The drop in combustion rate in the dusty medium is related to a decrease in temperature 
in the zone of active chemical reaction due to expenditure of a part of the heat liberated on 
particle heating�9 

Neglecting the power dependence of combustion rate on temperature, but considering the 
fundamental exponential in Eq. (4), we obtain the relationship 

where Tg o is the temperature in the combustion zone in the presence of particles. The value 
of Tgo (and consequently the flame rate u) can be estimated analytically, if after transforma- 
tionto a coordinate system fixed to the flame, in accordance with the narrow zone method[8] 
we assume that the chemical reaction occurs only on the surface x = O, where complete conver- 
sion of the material occurs (b(x = 0) = 0), so that the difference between thermal fluxes to 
the right and left of the surface will be 
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For x # 0 in the case of steady state flame propagation the equations 

u dTg= Z~ d2Tg N.sr (Tg--Tp), 

dO d2b 
u --- D - - ,  

dx  dx ~ 

dTp. _ ~sp (Tg -- Tp) 

(7) 

(8) 

(9) u 
dx %ppWp 

are valid. For x =--~ Tp = Tg =T_, b = i. The values Tg(x = 0) = Tg o, Tp(x = 0) = Tpo , Tg 
(x = ~) = T~ are unknown. 

Writing the limited general solutions of Eqs. (7)-(9) for x > 0 and x < 0 and merging 
them at x = 0 with the aid of Eq. (6), we obtain 

T = : T _ q - -  T + - - T _  , (10) 
1-$-B 

]/1 + 4B~t (Tg, o - -  Tp.o)/(Tg,o - -  T_) = 2x 1 (Tg o - -  Tpo)/(Tp o - -  T_) - -  1, (11) 

3/1 + 4B% (~o - -  Tpo)/(T~o- T ~ ) =  1 - -  2% ( ~ , o -  Tp o)/(~0 - -  T| (12) 

E q u a t i o n  (10) i s  i n  f a c t  t he  thermodynamic  e q u a t i o n  f o r  t he  m i x t u r e  t e m p e r a t u r e  beh ind  
the combustion front where heat exchange between particles and gas has already ended. The dif- 
ference between T~ and T~0 is determined by the rate of heat exchange between the phases. 
The parameter corresponding to this process in Eqs. (ii), (12) is ~, = (aSp/WnCnp n) (lg/dg0g. 

2 ~ r 
u ), which is the ratio of the flame characteristic thermal time and the partlcle thermal re- 
action time. I f ~x § ~, then the temperatures of particles and gas do not differ, and Tg 0 § 
T~. For the case T~ § 0 during their traversal of the flame front the particles do not ~b- 
sorb heat, remaining cold, while within the reaction zone the gas reaches the adiabatic tem- 
perature Tg 0 = T+. 

Introducing the quantities X = (Tg0-T~)/(T~-T_), Z = (T~-Tpo)/(Tg0-T~) and V = (i +X-X). 
(i + Z) -x we obtain from Eq. (12) an equation for Z: 

Z-2+ Z-i(1 + ~T 1) = B/Tt, (13) 

and f rom Eq. (11) an e q u a t i o n  f o r  V: 

]/I + 4Bxl/V = 2xt/(V- I)" I, (14) 

after finding which we obtain X: 

X = [V(l + Z ) - -  II -~ 

and thus find the temperature Tg 0. 

The solutions of Eqs. (13), (14) are cumbersome. We will limit ourselves to the limiting 
cases in x, (the parameter B is usually much less than unity). 

As Tt + 0 we obtain ZB + i + r~, V § i + Tt and X § B[I + Tx(2 + B)]-*. For z~ + ~ ZB§ 
�9 x, V § T,(I + B) -I and X + B(I + B)/T~ + 0. As an interpolation expression for the mono- 
tonically varying function X(B, Tx) with correct limiting cases we may use 

X =  B B .~, (15) 
~ (1 + XI) ~ 

1 + xt (2 + B)-{- I + B  

It follows from Eq. (15) that for the variation of Tx from zero to ~, Tg o changes from T+ to 
T~. Then, as analysis of the change in Z shows, the particle temperature in the reaction zone 
Tp0 takes on values from T-- to T~. 

Now performing a replacement in Eq. (5) with consideration of Eq. (i0) 

T+ - -  Tgo ---- (T+ - -  T~) (1 q- 
T+ T| 1 q- B T+ -- T_ B ' 
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Fig. 2. Dynamics of changes in flame velocity with time 
for various hearth sizes Z = L/x~ ~ and dust cloud parame- 
ters: i) B = 0.2, ~ = i0; x) B = 0.2, ~ = i0 ~, y = 0.i. 

Fig. 3. Critical hearth size vs steady state velocity 
in dusty region: a) B = 0.2; b) 0.15; c) 0.i0; d) 0.05; 
i, z = i0; 2, • = i0=; 3, ~ = i0', y = 0.i. 

we obtain 

= e x p  1 - -  ~ e x p  1 - -  

The undefined u appears in the expression for T,. Introducing the parameter T+ = ~Sp~g/WpCp, 
ppCg0gU=+ = (2yax) -I, we find ~I = (u+/u)=/2y3~. 

Denoting v = u~/u a , we arrive at the transcendental equation 

{ }I } 
v y(1 + B )  ~(1 + B )  1 + ,  2p• 476xz.(1 + B )  

A computer a n a l y s i s  showed t h a t  f o r  B~<,3,3+4B Eq. (16) has a unique r o o t  f o r  a l l  z. 

The calculation region in the present study was limited to the upper value B/y ~ 2, so 
that it is wholly contained with the region of uniqueness of the root. 

In principle it is possible for three roots to exist over some range of • < • < ~= 
(B/y). For B/y~3.3+ 4B the flame velocity value may be nonunique depending on the initial 
initiation conditions. In this sense the situation is analogous to that of combustion of a 
bar packed within an inert shell [9]. 

It is possible that nonuniqueness of the combustion rate can be found at high particle 
mass concentrations (B % 0.5 to 1.0), if initiation is modeled by a hearth of different tem- 
perature, which lies outside the formulation described above. 

Experiment has shown that Eq. (16) can be solved by the iteration method, at least in 
the calculation region, beginning with v = i. The first iteration gives the relationship 

=oxp r, 1 , 
? ( I + B )  V ( I + B )  + 2+___~B 4 4~u2( 1 B) 

2y3• + 

which has proper limiting cases for change in n.  As ~ + 0 u + u+ exp{--B/2y(l + B)}, corres- 
ponding to Tg 0 + T~, while for ~ + ~ u + u+, in accordance with the above. 

Equation (17) corresponds with an error of no more than 7% with results obtained in a 
numerical computer calculation. The dependence found describes the experimental results of 
[5-7] qualitatively correctly. In particular, if we assume B << i, x >> i, Wp/Sp = r/3, a = 
yg/r then Eq. (17) takes on the form 

u+ 2y~• 2%%~ r z ' 
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. Fig. 4. Temperature distribution of particles 0 D = (Tp-T+)E/RT~ 
(dashed line) and gas 0g -- (Tg-T+)E/RT~ (solid llne) and heat 
liberation function ~ (dash-dot line) at times: i, T = 1225; 2, 
2450; 3, 3675; a) I = 28, B = 0.2, • = I0; b) ~ = 13, B = 0.2, 

= i0 ~ . 

similar to the approximation functions of [5-7]. In contrast to [5, 6] the cofactor of the 
ratio of the volume particle concentration to the square of the particle radius is not com- 
pletely determined by the thermal diffusivity of the gas and the normal flame rate -- it ex- 
plicitly contains the parameter y, i.e., the activation energy and thermal effectof the reaction. 

Knowing the dependence of u on the gas suspension properties, we can estimate the phleg- 
matizing capability of the cloud. Thus, the layer thickness capable of reducing the flame 
rate ~u -i increases with increase in concentration and with decrease in particle size. 

2. Combustion Propagation from a Hot Hearth Filled by a Suspension. We will consider 
the following scheme of phlegmatization of gas combustion by an inert powder. 

Let a layer of thickness 2L be filled by the hot combustion products. A cloud of inert 
particles is sprayed into this hearth and the surrounding space. Depending on the parameters 
of the fuel gas and the powder, either development of combustion through the dusty medium or 
extinguishing of the flame is possible. 

To clarify the development of the process and find the critical conditions for Eqs. (i)- 
(3) we formulate the following initial and boundary conditions: 

T_, x > L ,  1, x >L ,  

Tp (x, O) = T_, OTgox I~=o. = ---- oxOb x=o,  = 0 .  

The dynamics of the change in flame propagation velocity for a fixed value of dust concentra- 
tion B at two values of the particle size x with variation of the hearth size ~ are shown in 
Fig. 2. The critical conditions for combustion propagation are quite evident. For a given 
y (dependent only on the fuel gas properties) the critical size l, is larger, the greater the 
difference between flame propagation rates in the fuel gas and dusty medium. 

It can be proposed that the critical size should be of the order of the thickness of the 
flame propagation [8]. Consequently, the product (~,~) should be constant for the case of a 
pure gas and a gas suspension. Figure 3 shows that this relationship is satisfied quite well 
for various B, but moderate • (up to • ~ 102). At ~ ~ 103 and above the value of (l,~) de- 
creases, so that it is not possible to recommend a single analytical expression for l, over 
the entire range of • The situation is similar for other values of y. 

The insensitivity of l, to the presence of coarse particles (large x) is related to the 
inertial nature of heat exchange between the particles and gas. 

Figure 4a shows phase temperature and heat liberation profiles at various times for fine 
particles ( l ~ / t , ) .  The gas and particle temperatures are similar, and the major heat libera- 
tion occurs in the section where 8p ~ Og ~ 8= (maximum flame temperature in the gas suspen- 
sion). Figure 4b depicts another situation: coarse particles cannot heat through and the 
combustion front separates from the particle heating zone. In this case the critical dimen- 
sion l, in the dust--gas mixture falls to the critical hearth dimensions for the pure gas mix- 
ture: l+ = l, (B = 0). 

It was noted in [6] that a finely dispersed dust was capable of extinguishing a propane- 
air flame while a coarse dispersion, even when supplied in much higher concentration, did not 
produce extinction. In interpreting the experimental results, aside from the effects referred 
to above, one must keep in mind the possibility of extinction due to convective heat losses 
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[8] in a small radius burner, which may prove significant because of retardation of the flame 
in the gas suspension as compared to the case of a pure gas mixture. Radiant heat loss from 
radiating particles may also play some role. 

Consideration of these effects requires further development of the model of powder--flame 
interaction. The theory presented here indicates that all the basic experimental facts pre- 
sented above are adequately described by a model including only the thermal interaetionmechaniem. 

NOTATION 

Tg, Cg, pg, %g, gas temperature, specific heat, density, and thermal conductivity; Tp, 
Cp, pp, Wp, Sp, particle temperature, specific heat, density, volume, and area; E, k, R, Q, 
activation energy, preexponential term, ideal gas constant, thermal effect of combustion of 
initial reagent b;@D, @g, dimensionless gas and particle temperatures; T = t/t+ and ~ = x/x+, 
dimensionless time and coordinate; ~, B, ~, I = L/x+, T,, parameters; L, half width of igni- 
tion hearth; Z,, critical hearth size. 
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METHODS OF RESEARCHING THERMOPHYSICAL PARAMETERS AND PHENOMENA BY MEANS 

OF NONSTATIONARY-FREQUENCY MEASUREMENTS. 

PART 2. STEP AND INSTANTANEOUS HEATING METHODS 

A. G. Shashkov, V. I. Krylovich, 
and A. S. Konovalov 

UDC 536.24 

Various types of instantaneous and stepped heat source are considered, which act in 
unbounded bodies. A method has been devised forusing the solutions to define the 
thermophysical parameters by means of nonstatlonary-frequeney measurement methods. 

Pulse, stepped, and periodic heating methods are [l]the most promising and correspond 
to current requirements as regards speed, accuracy, and informativeness. Phase and frequency 
measurements may be made instead of amplitude ones to considerable advantage as regards reso- 
lution and speed [i], but in that study, the restricted volume meant that it dealt with only 
one form of step methods, namely a semiinfinite body with boundary conditions of the first 
kind. That however demonstrated the main advantages of the formulation and solutions. There- 
fore, here and subsequently we avoid giving excess details. 
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